Treating Benign Esophageal Ruptures and Anastomotic Leaks
Treating Benign Esophageal Ruptures and Anastomotic Leaks
All patients who had received a self-expandable metal or plastic stent for sealing a benign esophageal rupture or anastomotic leak after esophageal or gastric surgery in the period January 1, 2007-January 1, 2010 were enrolled in this study. Data on patient demographics, type and cause of lesion, stent type, placement and removal details, clinical success (sealing rate), complications, reinterventions and mortality were retrospectively collected. Patients with malignant fistulas or ruptures, or for whom no follow-up information was available were excluded (10%).
All patients received a covered esophageal stent, a PSEMS, FSEMS or SEPS (see below).
The PSEMS used in our study were the:
- Ultraflex stent (Boston Scientific, Natick, MA), length 120 mm, cover 90 mm, diameter 28/23 mm, or length 150 mm, cover 120 mm, diameter 23/18 mm;
- WallFlex Esophageal Stent (Boston Scientific), length 120 mm, cover 90 mm, diameter 28/23 mm.
The FSEMS used were the:
- SX-ELLA Stent Esophageal HV (ELLA-CS, Hradec Králové, Czech Republic), length 85 mm, diameter 25/20/25 mm or length 110 mm, diameter 25/20/25 mm;
- ALLIMAX-E Esophageal stent (Alveolus, Charlotte, NC), length 120 mm, diameter 22 mm;
- Choo stent (M.I. Tech, Seoul, South Korea), length 60 mm, diameter 18 mm.
The SEPS used was the Polyflex Esophageal Stent (Boston Scientific), length 90 mm, diameter 25/21 mm.
Endoscopic stent placement was performed under fluoroscopic control. Endoscopic stent removal was performed with a rat-tooth forceps grasping the proximal end of the stent; only some of the Ultraflex stents were grasped distally, resulting in removal of an inverted stent. When endoscopic stent removal was expected to be complicated due to tissue ingrowth (PSEMS) and/or overgrowth (all stent types), a FSEMS of the same size was placed inside the stent. This stent at least overlapped the previously placed stent and induced pressure necrosis of the tissue in- or overgrowth. This resulted in uncomplicated removal of both stents after 10–14 days (stent-in-stent method). After stent removal, an endoscopy and/or a water-soluble contrast esophagogram was performed to confirm sealing. All endoscopic procedures were performed under conscious sedation (midazolam or propofol) or general anesthesia according to the patient's condition.
Primary endpoint of the study was clinical success defined as sealing of a rupture or leak as confirmed by endoscopy and an additional esophagogram in case of doubt. Secondary outcomes included technical success of stent placement and removal, complication rates and survival. For technical outcome we registered details on stent deployment and placement at the required location. Removal was considered to be successful when the stent could be removed as a whole and without complications in one session. Complications included stent- and procedure-related adverse events.
The following variables were included in the analyses: a) clinical characteristics: age, gender, lesion length, location and etiology, and prior treatment, b) outcome and survival: technical success, clinical success, survival and cause of death, and c) complications. Results were expressed as mean ± SD and medians with range, as appropriate. Chi-Square test and Kruskal Wallis test were used as appropriate. All analyses were performed on an intention-to-treat (ITT) basis. A p-value <0.05 was considered statistically significant. Statistical analyses were conducted using SPSS version 15 (SPSS Inc, Chicago, Ill. USA).
Methods
Patients
All patients who had received a self-expandable metal or plastic stent for sealing a benign esophageal rupture or anastomotic leak after esophageal or gastric surgery in the period January 1, 2007-January 1, 2010 were enrolled in this study. Data on patient demographics, type and cause of lesion, stent type, placement and removal details, clinical success (sealing rate), complications, reinterventions and mortality were retrospectively collected. Patients with malignant fistulas or ruptures, or for whom no follow-up information was available were excluded (10%).
Esophageal Stents
All patients received a covered esophageal stent, a PSEMS, FSEMS or SEPS (see below).
The PSEMS used in our study were the:
- Ultraflex stent (Boston Scientific, Natick, MA), length 120 mm, cover 90 mm, diameter 28/23 mm, or length 150 mm, cover 120 mm, diameter 23/18 mm;
- WallFlex Esophageal Stent (Boston Scientific), length 120 mm, cover 90 mm, diameter 28/23 mm.
The FSEMS used were the:
- SX-ELLA Stent Esophageal HV (ELLA-CS, Hradec Králové, Czech Republic), length 85 mm, diameter 25/20/25 mm or length 110 mm, diameter 25/20/25 mm;
- ALLIMAX-E Esophageal stent (Alveolus, Charlotte, NC), length 120 mm, diameter 22 mm;
- Choo stent (M.I. Tech, Seoul, South Korea), length 60 mm, diameter 18 mm.
The SEPS used was the Polyflex Esophageal Stent (Boston Scientific), length 90 mm, diameter 25/21 mm.
Endoscopic stent placement was performed under fluoroscopic control. Endoscopic stent removal was performed with a rat-tooth forceps grasping the proximal end of the stent; only some of the Ultraflex stents were grasped distally, resulting in removal of an inverted stent. When endoscopic stent removal was expected to be complicated due to tissue ingrowth (PSEMS) and/or overgrowth (all stent types), a FSEMS of the same size was placed inside the stent. This stent at least overlapped the previously placed stent and induced pressure necrosis of the tissue in- or overgrowth. This resulted in uncomplicated removal of both stents after 10–14 days (stent-in-stent method). After stent removal, an endoscopy and/or a water-soluble contrast esophagogram was performed to confirm sealing. All endoscopic procedures were performed under conscious sedation (midazolam or propofol) or general anesthesia according to the patient's condition.
Endpoints
Primary endpoint of the study was clinical success defined as sealing of a rupture or leak as confirmed by endoscopy and an additional esophagogram in case of doubt. Secondary outcomes included technical success of stent placement and removal, complication rates and survival. For technical outcome we registered details on stent deployment and placement at the required location. Removal was considered to be successful when the stent could be removed as a whole and without complications in one session. Complications included stent- and procedure-related adverse events.
Statistical Analysis
The following variables were included in the analyses: a) clinical characteristics: age, gender, lesion length, location and etiology, and prior treatment, b) outcome and survival: technical success, clinical success, survival and cause of death, and c) complications. Results were expressed as mean ± SD and medians with range, as appropriate. Chi-Square test and Kruskal Wallis test were used as appropriate. All analyses were performed on an intention-to-treat (ITT) basis. A p-value <0.05 was considered statistically significant. Statistical analyses were conducted using SPSS version 15 (SPSS Inc, Chicago, Ill. USA).
Source...